TOILET OTOMATIS
1. Pendahuluan[kembali]
Toilet transparan, telah menjadi fenomena yang menarik perhatian dunia dalam beberapa tahun terakhir. Berbeda dengan toilet konvensional, toilet transparan menawarkan pengalaman yang unik dan menarik bagi pengguna. Dengan desain yang futuristik dan teknologi yang canggih, toilet ini tidak hanya memberikan kenyamanan dan higienitas yang tinggi, tetapi juga menjadi atraksi wisata yang populer.
2. Tujuan[kembali]
3. Alat dan Bahan[kembali]
Alat:
1. Voltmeter DC
2. DC dan sine generator
1. Resistor
Specifications | |
Resistance (Ohms) | 1K |
Power (Watts) | 0.25W, 1/4W |
Tolerance | ±5% |
Packaging | Bulk |
Composition | Carbon Film |
Temperature Coefficient | 350ppm/°C |
Lead Free Status | Lead Free |
RoHS Status | RoHS Compliant |
2. Battery
Output voltage: DC 1~35V
Max. input current: DC 14A
Charging current: 0.1~10A
Discharging current: 0.1~1.0A
Balance current: 1.5A/Cell Max
Max. discharging power: 15W
Max. charging power: AC 100W / DC 250W
Jenis batre yg didukung: LiFe, Lilon, LiPo 1~6S, LiHv 1-6S, Pb 1-12S, NiMH, Cd 1-16S
Ukuran:126x115x49mm
Berat:460gr
3. Dioda
4. Operational Amplifier (741)

Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.
Op-Amp memiliki beberapa karakteristik, di antaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)
Rangkaian dasar Op-Amp
Op Amp IC 741 adalah sirkuit terpadu monolitik, yang terdiri dari Penguat Operasional tujuan umum. Ini pertama kali diproduksi oleh semikonduktor Fairchild pada tahun 1963. Angka 741 menunjukkan bahwa IC penguat operasional ini memiliki 7 pin fungsional, 4 pin yang mampu menerima input dan 1 pin output.
Op Amp IC 741 dapat memberikan penguatan tegangan tinggi dan dapat dioperasikan pada rentang tegangan yang luas, yang menjadikannya pilihan terbaik untuk digunakan dalam integrator, penguat penjumlahan, dan aplikasi umpan balik umum. Ini juga dilengkapi perlindungan hubung singkat dan sirkuit kompensasi frekuensi internal yang terpasang di dalamnya.
Op-Amp memiliki beberapa karakteristik, di antaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)
Rangkaian dasar Op-Amp
Op Amp IC 741 adalah sirkuit terpadu monolitik, yang terdiri dari Penguat Operasional tujuan umum. Ini pertama kali diproduksi oleh semikonduktor Fairchild pada tahun 1963. Angka 741 menunjukkan bahwa IC penguat operasional ini memiliki 7 pin fungsional, 4 pin yang mampu menerima input dan 1 pin output.
Op Amp IC 741 dapat memberikan penguatan tegangan tinggi dan dapat dioperasikan pada rentang tegangan yang luas, yang menjadikannya pilihan terbaik untuk digunakan dalam integrator, penguat penjumlahan, dan aplikasi umpan balik umum. Ini juga dilengkapi perlindungan hubung singkat dan sirkuit kompensasi frekuensi internal yang terpasang di dalamnya.
1. Sound Sensor
- Tegangan kerja: 2v s/d 5.5v (optimal 3v)
- Output high VOH: 0.8VCC (typical)
- Output low VOL: 0.3VCC (max)
- Arus Output Pin Sink (@ VCC 3V, VOL 0.6V): 8mA
- Arus Output pin pull-up (@ VCC=3V, VOH=2.4V): 4mA
- Waktu respon (low power mode): max 220ms
- Waktu respon (touch mode): max 60ms
- Ukuran: 24x24x7.2mm
Sensor MQ2 berfungsi untuk mendeteksi keberadaan gas yang mudah terbakar seperti LPG, butana, propana, metana, alkohol, hidrogen, dan asap. Sensor ini menggunakan elemen pemanas dan bahan kimia sensitif untuk mengukur konsentrasi gas dalam udara dan menghasilkan sinyal output analog yang dapat dihubungkan ke mikroprosesor atau mikrokontroler untuk analisis lebih lanjut. Dengan kemampuan untuk mendeteksi berbagai jenis gas yang berpotensi berbahaya, MQ2 sensor banyak digunakan dalam sistem keamanan rumah, detektor kebocoran gas, sistem ventilasi industri, dan aplikasi lain yang memerlukan pemantauan kualitas udara dan deteksi gas.
Konfigurasi Pin :
7. Logic State

KOMPONEN OUTPUT :
1. Relay
2. Lampu
Spesifikasi :
- Infra merah : 1,6 V.
- Merah : 1,8 V – 2,1 V.
- Oranye : 2,2 V.
- Kuning : 2,4 V.
- Hijau : 2,6 V.
- Biru : 3,0 V – 3,5 V.
- Putih : 3,0 – 3,6 V.
- Ultraviolet : 3,5 V.
3. Motor DC
Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion)
Spesifikasi Motor DC
Konfigurasi motor DC:

4. Dasar Teori[kembali]
Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika. Sebagaimana fungsi resistor yang sesuai namanya bersifat resistif dan termasuk salah satu komponen elektronika dalam kategori komponen pasif. Satuan atau nilai resistansi suatu resistor di sebut Ohm dan dilambangkan dengan simbol Omega (Ω). Sesuai hukum Ohm bahwa resistansi berbanding terbalik dengan jumlah arus yang mengalir melaluinya. Selain nilai resistansinya (Ohm) resistor juga memiliki nilai yang lain seperti nilai toleransi dan kapasitas daya yang mampu dilewatkannya. Semua nilai yang berkaitan dengan resistor tersebut penting untuk diketahui dalam perancangan suatu rangkaian elektronika oleh karena itu pabrikan resistor selalu mencantumkan dalam kemasan resistor tersebut.
Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika. Sebagaimana fungsi resistor yang sesuai namanya bersifat resistif dan termasuk salah satu komponen elektronika dalam kategori komponen pasif. Satuan atau nilai resistansi suatu resistor di sebut Ohm dan dilambangkan dengan simbol Omega (Ω). Sesuai hukum Ohm bahwa resistansi berbanding terbalik dengan jumlah arus yang mengalir melaluinya. Selain nilai resistansinya (Ohm) resistor juga memiliki nilai yang lain seperti nilai toleransi dan kapasitas daya yang mampu dilewatkannya. Semua nilai yang berkaitan dengan resistor tersebut penting untuk diketahui dalam perancangan suatu rangkaian elektronika oleh karena itu pabrikan resistor selalu mencantumkan dalam kemasan resistor tersebut.
Simbol Resistor Sebagai Berikut :
Resistor dalam suatu teori dan penulisan formula yang berhubungan dengan resistor disimbolkan dengan huruf “R”. Kemudian pada desain skema elektronika resistor tetap disimbolkan dengan huruf “R”, resistor variabel disimbolkan dengan huruf “VR” dan untuk resistorjenis potensiometer ada yang disimbolkan dengan huruf “VR” dan “POT”.
Resistor dalam suatu teori dan penulisan formula yang berhubungan dengan resistor disimbolkan dengan huruf “R”. Kemudian pada desain skema elektronika resistor tetap disimbolkan dengan huruf “R”, resistor variabel disimbolkan dengan huruf “VR” dan untuk resistorjenis potensiometer ada yang disimbolkan dengan huruf “VR” dan “POT”.
Kapasitas Daya Resistor
Kapasitas daya pada resistor merupakan nilai daya maksimum yang mampu dilewatkan oleh resistor tersebut. Nilai kapasitas daya resistor ini dapat dikenali dari ukuran fisik resistor dan tulisan kapasitas daya dalamsatuan Watt untuk resistor dengan kemasan fisik besar. Menentukan kapasitas daya resistor ini penting dilakukan untuk menghindari resistor rusak karena terjadi kelebihan daya yang mengalir sehingga resistor terbakar dan sebagai bentuk efisiensi biaya dan tempat dalam pembuatan rangkaian elektronika.
Kapasitas daya pada resistor merupakan nilai daya maksimum yang mampu dilewatkan oleh resistor tersebut. Nilai kapasitas daya resistor ini dapat dikenali dari ukuran fisik resistor dan tulisan kapasitas daya dalamsatuan Watt untuk resistor dengan kemasan fisik besar. Menentukan kapasitas daya resistor ini penting dilakukan untuk menghindari resistor rusak karena terjadi kelebihan daya yang mengalir sehingga resistor terbakar dan sebagai bentuk efisiensi biaya dan tempat dalam pembuatan rangkaian elektronika.
Nilai Toleransi Resistor
Toleransi resistor merupakan perubahan nilai resistansi dari nilai yang tercantum pada badan resistor yang masih diperbolehkan dan dinyatakan resistor dalam kondisi baik. Toleransi resistor merupakan salah satu perubahan karakteristik resistor yang terjadi akibat operasional resistor tersebut. Nilai torleransi resistor ini ada beberapa macam yaitu resistor dengan toleransi kerusakan 1% (resistor 1%), resistor dengan toleransi kesalahan 2% (resistor2%), resistor dengan toleransi kesalahan 5% (resistor 5%) dan resistor dengan toleransi 10% (resistor 10%).
Nilai toleransi resistor ini selalu dicantumkan di kemasan resistor dengan kode warna maupun kode huruf. Sebagai contoh resistor dengan toleransi 5% maka dituliskan dengan kode warna pada cincin ke 4 warna emas atau dengan kode huruf J pada resistor dengan fisik kemasan besar. Resistor yang banyak dijual dipasaran pada umumnya resistor 5% dan resistor 1%.
Toleransi resistor merupakan perubahan nilai resistansi dari nilai yang tercantum pada badan resistor yang masih diperbolehkan dan dinyatakan resistor dalam kondisi baik. Toleransi resistor merupakan salah satu perubahan karakteristik resistor yang terjadi akibat operasional resistor tersebut. Nilai torleransi resistor ini ada beberapa macam yaitu resistor dengan toleransi kerusakan 1% (resistor 1%), resistor dengan toleransi kesalahan 2% (resistor2%), resistor dengan toleransi kesalahan 5% (resistor 5%) dan resistor dengan toleransi 10% (resistor 10%).
Nilai toleransi resistor ini selalu dicantumkan di kemasan resistor dengan kode warna maupun kode huruf. Sebagai contoh resistor dengan toleransi 5% maka dituliskan dengan kode warna pada cincin ke 4 warna emas atau dengan kode huruf J pada resistor dengan fisik kemasan besar. Resistor yang banyak dijual dipasaran pada umumnya resistor 5% dan resistor 1%.
Jenis-Jenis Resistor
Berdasarkan jenis dan bahan yang digunakan untuk membuat resistor dibedakan menjadi resistor kawat, resistor arang dan resistor oksida logam atau resistor metal film.
Berdasarkan jenis dan bahan yang digunakan untuk membuat resistor dibedakan menjadi resistor kawat, resistor arang dan resistor oksida logam atau resistor metal film.
- Resistor Kawar (Wirewound Resistor)
Resistor kawat atau wirewound resistor merupakan resistor yang dibuat dengan bahat kawat yang dililitkan. Sehingga nilai resistansiresistor ditentukan dari panjangnya kawat yang dililitkan. Resistor jenis ini pada umumnya dibuat dengan kapasitas daya yang besar.
- Resistor Kawar (Wirewound Resistor)
Resistor kawat atau wirewound resistor merupakan resistor yang dibuat dengan bahat kawat yang dililitkan. Sehingga nilai resistansiresistor ditentukan dari panjangnya kawat yang dililitkan. Resistor jenis ini pada umumnya dibuat dengan kapasitas daya yang besar.
- Resistor Arang (Carbon Resistor)
Resistor arang atau resistor karbon merupakan resistor yang dibuat dengan bahan utama batang arang atau karbon. Resistor karbon ini merupakan resistor yang banyak digunakan dan banyak diperjual belikan. Dipasaran resistor jenis ini dapat kita jumpai dengan kapasitas daya 1/16 Watt, 1/8 Watt, 1/4 Watt, 1/2 Watt, 1 Watt, 2 Watt dan 3 Watt.
- Resistor Arang (Carbon Resistor)
Resistor arang atau resistor karbon merupakan resistor yang dibuat dengan bahan utama batang arang atau karbon. Resistor karbon ini merupakan resistor yang banyak digunakan dan banyak diperjual belikan. Dipasaran resistor jenis ini dapat kita jumpai dengan kapasitas daya 1/16 Watt, 1/8 Watt, 1/4 Watt, 1/2 Watt, 1 Watt, 2 Watt dan 3 Watt.
- Resistor Oksida Logam (Metal Film Resistor)
Resistor oksida logam atau lebih dikenal dengan nama resistor metal film merupakan resistor yang dibuah dengan bahan utama oksida logam yang memiliki karakteristik lebih baik. Resistor metal film ini dapat ditemui dengan nilai tolerasni 1% dan 2%. Bentuk fisik resistor metal film ini mirip denganresistor kabon hanya beda warna dan jumlah cicin warna yang digunakan dalam penilaian resistor tersebut. Sama seperti resistorkarbon, resistor metal film ini juga diproduksi dalam beberapa kapasitas daya yaitu 1/8 Watt, 1/4 Watt, 1/2 Watt. Resistor metal film ini banyak digunakan untuk keperluan pengukuran, perangkat industri dan perangkat militer.
Kemudian berdasarkan nilai resistansinya resistor dibedakan menjadi 2 jenis yaitu resistor tetap (Fixed Resistor) dan resistor tidak tetap (Variable Resistor)
- Resistor Oksida Logam (Metal Film Resistor)
Resistor oksida logam atau lebih dikenal dengan nama resistor metal film merupakan resistor yang dibuah dengan bahan utama oksida logam yang memiliki karakteristik lebih baik. Resistor metal film ini dapat ditemui dengan nilai tolerasni 1% dan 2%. Bentuk fisik resistor metal film ini mirip denganresistor kabon hanya beda warna dan jumlah cicin warna yang digunakan dalam penilaian resistor tersebut. Sama seperti resistorkarbon, resistor metal film ini juga diproduksi dalam beberapa kapasitas daya yaitu 1/8 Watt, 1/4 Watt, 1/2 Watt. Resistor metal film ini banyak digunakan untuk keperluan pengukuran, perangkat industri dan perangkat militer.
Kemudian berdasarkan nilai resistansinya resistor dibedakan menjadi 2 jenis yaitu resistor tetap (Fixed Resistor) dan resistor tidak tetap (Variable Resistor)
- Resistor Tetap(Fixed Resistor)
Resistor tetap merupakan resistor yang nilai resistansinya tidap dapat diubah atau tetap. Resistor jenis ini biasa digunakan dalam rangkaian elektronika sebagai pembatas arus dalam suatu rangkaian elektronika. Resistor tetap dapat kita temui dalam beberpa jenis, seperti :
- Metal Film Resistor
- Metal Oxide Resistor
- Carbon Film Resistor
- Ceramic Encased Wirewound
- Economy Wirewound
- Zero Ohm Jumper Wire
- S I P Resistor Network
- Resistor Tetap(Fixed Resistor)
Resistor tetap merupakan resistor yang nilai resistansinya tidap dapat diubah atau tetap. Resistor jenis ini biasa digunakan dalam rangkaian elektronika sebagai pembatas arus dalam suatu rangkaian elektronika. Resistor tetap dapat kita temui dalam beberpa jenis, seperti :
- Metal Film Resistor
- Metal Oxide Resistor
- Carbon Film Resistor
- Ceramic Encased Wirewound
- Economy Wirewound
- Zero Ohm Jumper Wire
- S I P Resistor Network
- Resistor Tidak Tetap (Variable Resistor)
Resistor tidak tetap atau variable resistor terdiridari 2 tipe yaitu :
- Pontensiometer, tipe variable resistor yang dapat diatur nilai resistansinya secara langsung karena telah dilengkapi dengan tuas kontrol. Potensiometer terdiri dari 2 jenis yaitu Potensiometer Linier dan Potensiometer Logaritmis
- Trimer Potensiometer, yaitu tipe variable resistor yang membutuhkan alat bantu (obeng) dalam mengatur nilai resistansinya. Pada umumnya resistor jenis ini disebut dengan istilah “Trimer Potensiometer atau VR”
- Thermistor, yaitu tipe resistor variable yangnilairesistansinya akan berubah mengikuti suhu disekitar resistor. Thermistor terdiri dari 2 jenis yaitu NTC dan PTC. Untuk lebih detilnya thermistor akan dibahas dalam artikel yang lain.
- LDR (Light Depending Resistor), yaitu tipe resistor variabel yang nilai resistansinya akan berubah mengikuti cahaya yang diterima oleh LDR tersebut.
Jenis-jenis resistor tetap dan variable diatas akan dibahas lebih detil dalam artikel yang lain.
- Resistor Tidak Tetap (Variable Resistor)
Resistor tidak tetap atau variable resistor terdiridari 2 tipe yaitu :
- Pontensiometer, tipe variable resistor yang dapat diatur nilai resistansinya secara langsung karena telah dilengkapi dengan tuas kontrol. Potensiometer terdiri dari 2 jenis yaitu Potensiometer Linier dan Potensiometer Logaritmis
- Trimer Potensiometer, yaitu tipe variable resistor yang membutuhkan alat bantu (obeng) dalam mengatur nilai resistansinya. Pada umumnya resistor jenis ini disebut dengan istilah “Trimer Potensiometer atau VR”
- Thermistor, yaitu tipe resistor variable yangnilairesistansinya akan berubah mengikuti suhu disekitar resistor. Thermistor terdiri dari 2 jenis yaitu NTC dan PTC. Untuk lebih detilnya thermistor akan dibahas dalam artikel yang lain.
- LDR (Light Depending Resistor), yaitu tipe resistor variabel yang nilai resistansinya akan berubah mengikuti cahaya yang diterima oleh LDR tersebut.
Jenis-jenis resistor tetap dan variable diatas akan dibahas lebih detil dalam artikel yang lain.
Menghitung Nilai Resistor
Nilai resistor dapat diketahui dengan kode warna dan kode huruf pada resistor. Resistor dengan nilai resistansi ditentukan dengan kode warna dapat ditemukan pada resistor tetap dengan kapasitas daya rendah, sedangkan nilai resistor yang ditentukan dengan kode huruf dapat ditemui pada resistor tetap daaya besar dan resistor variable.
Nilai resistor dapat diketahui dengan kode warna dan kode huruf pada resistor. Resistor dengan nilai resistansi ditentukan dengan kode warna dapat ditemukan pada resistor tetap dengan kapasitas daya rendah, sedangkan nilai resistor yang ditentukan dengan kode huruf dapat ditemui pada resistor tetap daaya besar dan resistor variable.
Kode Warna Resistor
Resistor Dengan 4 Cincin Kode Warna
Maka cincin ke 1 dan ke 2 merupakan digit angka, dan cincin kode warna ke 3 merupakan faktor pengali kemudian cincin kode warnake 4 menunjukan nilai toleransi resistor.
Maka cincin ke 1 dan ke 2 merupakan digit angka, dan cincin kode warna ke 3 merupakan faktor pengali kemudian cincin kode warnake 4 menunjukan nilai toleransi resistor.
Resistor Dengan 5 Cincin Kode Warna
Maka cincin ke 1, ke 2 dan ke 3 merupakan digit angka, dan cincin kode warna ke 4 merupakan faktor pengali kemudian cincin kode warna ke 5 menunjukan nilai toleransi resistor.
Maka cincin ke 1, ke 2 dan ke 3 merupakan digit angka, dan cincin kode warna ke 4 merupakan faktor pengali kemudian cincin kode warna ke 5 menunjukan nilai toleransi resistor.
Resistor Dengan 6 Cincin Warna
Resistor dengan 6 cicin warna pada prinsipnya sama dengan resistor dengan 5 cincin warna dalam menentukan nilai resistansinya. Cincin ke 6 menentukan coefisien temperatur yaitu temperatur maksimum yang diijinkan untuk resistor tersebut.
Resistor dengan 6 cicin warna pada prinsipnya sama dengan resistor dengan 5 cincin warna dalam menentukan nilai resistansinya. Cincin ke 6 menentukan coefisien temperatur yaitu temperatur maksimum yang diijinkan untuk resistor tersebut.
Kode Huruf Resistor
Resistor dengan kode huruf dapat kita baca nilai resistansinya dengan mudah karenanilia resistansi dituliskan secara langsung. Pad umumnya resistor yang dituliskan dengan kode huruf memiliki urutan penulisan kapasitas daya, nilai resistansi dan toleransi resistor. Kode huruf digunakan untuk penulisan nilai resistansi dan toleransi resistor.
Kode Huruf Untuk Nilai Resistansi :
- R, berarti x1 (Ohm)
- K, berarti x1000 (KOhm)
- M, berarti x 1000000 (MOhm)
Kode Huruf Untuk Nilai Toleransi :
- F, untuk toleransi 1%
- G, untuk toleransi 2%
- J, untuk toleransi 5%
- K, untuk toleransi 10%
- M, untuk toleransi 20%
Rumus Resistor:
Resistor dengan kode huruf dapat kita baca nilai resistansinya dengan mudah karenanilia resistansi dituliskan secara langsung. Pad umumnya resistor yang dituliskan dengan kode huruf memiliki urutan penulisan kapasitas daya, nilai resistansi dan toleransi resistor. Kode huruf digunakan untuk penulisan nilai resistansi dan toleransi resistor.
Kode Huruf Untuk Nilai Resistansi :
- R, berarti x1 (Ohm)
- K, berarti x1000 (KOhm)
- M, berarti x 1000000 (MOhm)
Kode Huruf Untuk Nilai Toleransi :
- F, untuk toleransi 1%
- G, untuk toleransi 2%
- J, untuk toleransi 5%
- K, untuk toleransi 10%
- M, untuk toleransi 20%
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :
Dimana V adalah tegangan, I adalah kuat arus, dan R adalah Hambatan
Mencari resistansi total dalam rangkaian dapat menggunakan :Seri : Rtotal = R1 + R2 + R3 + ….. + Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Seri : Rtotal = R1 + R2 + R3 + ….. + Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
2. Dioda
Dioda atau disebut juga sinyal dioda adalah komponen dasar semikonduktor aktif yang hanya bisa mengalirkan arus satu arah saja (forward bias) yaitu dari arah positip (Anoda) ke arah negatif (Katoda) namun memblok arus untuk arah sebaliknya. Dalam rangkaian elektronika dioda diibaratkan sebagai kran/katup listrik satu arah. Dioda memiliki dua elektroda yaitu elektroda positip (Anoda) dan elektroda negatif (Katoda). Secara umum dioda biasa dipakai untuk merubah arus bolak-balik (AC) menjadi arus searah (DC) atau disebut sebagai Rectifier.
Dioda dibuat dari bahan semikonduktor seperti germanium (Ge), Silicon (Si) dan galium arsenide (GaAs), sifat listrik pada jenis material tersebut ialah menengah atau dengan kata lain tidak baik sebagai konduktor dan tidak baik juga sebagai insulator, sifat ini dinamakan semikonduktor.
Material semikonduktor memiliki sangat sedikit "elektron bebas" karena molekul atomnya terkumpul bersama dalam bentuk pola kristal yang sering disebut "kisi kristal". Untuk meningkatkan daya hantar listrik pada material ini maka perlu dicampurkan "kotoran atom" pada struktur kristalnya sehingga menghasilkan lebih banyak elektron bebas dan lubang atom. Untuk menghasilkan sisi Negatif (katoda) pada dioda maka material semikonduktor biasanya dicampurkan kotoran atom dengan bahan seperti: Arsenik, Antimony atau Fosfor. dan untuk menghasilkan sisi positip (Anoda) dicampur dengan kotoran atom dari bahan Aluminium, Boron atau Galium.
JENIS DAN SIMBOL DIODA
Seperti penjelasan diatas, Jenis dioda tergantung dari bahan material yang dipakai saat pembuatannya, dibawah ini adalah contoh gambar dan simbol dari jenis-jenis dioda:
1. Dioda Silicon Terbuat dari bahan Germanium, memiliki drop tegangan maju (forward volt drop) 0,7V, pada rangkaian elektronika biasa dipakai sebagai penyearah (rectifier). Contoh dioda Germanium adalah: 1N4000 series dan 1N5000 series dll.
2. Dioda Germanium Terbuat dari bahan Silicon, memiliki drop tegangan maju (forward volt drop) 0,3V. Biasa diaplikasikan sebagai dioda penyearah. contoh dioda silicon adalah: IN4148 atau 1N914 dll.
3. Dioda Zener Terbuat dari bahan silikon, dioda zener atau sering disebut juga "breakdown diode" berfungsi sebagai pembatas tegangan pada rangkaian, atau dengan kata lain dioda zener adalah komponen regulator tegangan sederhana. dioda zener memiliki rating tegangan antara 1 sampai ratusan volt dengan daya mulai dari 1/4w.
4. Light Emitting Diode atau LED Adalah jenis dioda yang dapat mengeluarkan cahaya, LED yang banyak dipasaran berbentuk kubah bulat dan juga kotak persegi dengan variasi warna merah, kuning, hijau, biru atau putih. batas arus maksimum LED adalah 20mA. dan memiliki drop tegangan maju (forward volt drop) antara 1,2v sampai 3,6v tergantung dari jenis warna LED.
5. Dioda Schottky disebut juga dioda power memiliki drop tegangan maju (forward bias) yang rendah, namun rating arus dan tegangannya tinggi. Biasa dipakai sebagai penyearah pada frekuensi tinggi, sering dipakai pada rangkaian pengisian battre, AC Rectifier dan Inverter.contoh untuk dioda schotky adalah 5819 atau 58xx dll.
3. Transistor
1. Dioda Silicon
3. Transistor
Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya. Kapasitor NPN memiliki simbol seperti gambar di bawah ini:
Simbol Transistor NPN BC547
Terdapat rumus rumus dalam mencari transistor seperti rumus di bawah ini:
Rumus dari Transitor adalah :
Rumus dari Transitor adalah :
hFE = iC/iB
hFE = iC/iB
dimana, iC = perubahan arus kolektor
dimana, iC = perubahan arus kolektor
iB = perubahan arus basis
iB = perubahan arus basis
hFE = arus yang dicapai
hFE = arus yang dicapai
Karakteristik Input
Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.
Pemberian bias
Ada beberapa macam rangkaian pemberian bias, yaitu:
1. Fixed bias yaitu, arus bias IB didapat dari VCC yang dihubungkan ke kaki B melewati tahanan R seperti gambar 58. Karakteristik Output.
2.Self Bias adalah arus input didapatkan dari pemberian tegangan input VBB seperti gambar 60.
3. Emitter-Stabilized Bias adalah rangkaian Fixed bias yang ditambahkan tahanan RE.Sehingga tahanan RE kalau dilihat dari input untuk mencari arus IB adalah sebesar (β+1)RE.
4. Voltage-divider Bias adalah arus bias didapatkan dari tegangan di R2 dari hubungan VCC seri dengan R1 dan R2 seperti gambar 61. Untuk mencari arus IB maka dilakukan perubahan rangkaian dengan memakai metoda thevenin sehingga menghasilkan rangkaian pengganti seperti gambar 62.
Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.
4. Op-amp LM741
Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.
Op-Amp memiliki beberapa karakteristik, di antaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)
1. Detektor Non Inverting Rangkaian detektor non inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref > 0 Volt adalah seperti gambar 78.2. Non Inverting Amplifier
Rangkaian non inverting amplifier (tidak membalik) adalah seperti gambar 122, input dimasukkan ke kaki non inverting sehingga tegangan output yang dihasilkan sefasa dengan tegangan input. Untuk mencari turunan penguatan tegangan ACL maka rangkaian dimisalkan dahulu dengan input dc positif, seperti gambar 123.
3. Voltage Follower Rangkaian voltage follower atau buffer dimana ACL = 1, adalah seperti pada gambar 129.
Syarat op-amp ideal adalah Ed= 0 maka VO = Vi sehingga ACL= Vo/Vi=1 Bentuk gelombang tegangan input dan gelombang tegangan output adalah sama karena ACL = 1 dan sefasa karena Vi diinputkan ke kaki non inverting seperti pada gambar 130 dan kurva karakteristik I-O seperti
4. Differential Amplifier
Op-Amp memiliki beberapa karakteristik, di antaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)
2. Non Inverting Amplifier
Rangkaian non inverting amplifier (tidak membalik) adalah seperti gambar 122, input dimasukkan ke kaki non inverting sehingga tegangan output yang dihasilkan sefasa dengan tegangan input. Untuk mencari turunan penguatan tegangan ACL maka rangkaian dimisalkan dahulu dengan input dc positif, seperti gambar 123.
5. Relay
Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.
Simbol di proteus
6. Ground
Ground adalah titik yang dianggap sebagai titik kembalinya arus listrik arus searah atau titik kembalinya sinyal bolak-balik atau titik patokan (referensi) berbagai titik tegangan dan sinyal listrik di dalam rangkaian elektronika.
Simbol di proteus
7. Power Supply
Catu daya merupakan suatu Rangkaian yang paling penting bagi sistem elektronika. Power supply atau catu daya adalah suatu alat atau perangkat elektronik yang berfungsi untuk merubah arus AC menjadi arus DC untuk memberi daya suatu perangkat keras lainnya. Sumber AC yaitu sumber tegangan bolak-balik, sedangkan sumber tegangan DC merupakan sumber tegangan searah. Power supply/unit catu daya secara efektif harus mengisolasi rangkaian internal dari jaringan utama, dan biasanya harus dilengkapi dengan pembatas arus otomatis atau pemutus bila terjadi beban lebih atau hubung singkat. Bila pada saat terjadinya kesalahan catu daya, tegangan keluaran DC meningkat di atas suatu nilai aman maksimum untuk rangkaian internal, maka daya secara otomatis harus diputuskan.
Simbol di proteus
8. Motor DCMotor DC adalah motor listrik yang memerlukan suplai tegangan arus searah pada kumparan medan untuk diubah menjadi energi gerak mekanik. Kumparan medan pada motor dc disebut stator (bagian yang tidak berputar) dan kumparan jangkar disebut rotor (bagian yang berputar). Motor arus searah, sebagaimana namanya, menggunakan arus langsung yang tidak langsung/directunidirectional.
Motor DC adalah piranti elektronik yang mengubah energi listrik menjadi energi mekanik berupa gerak rotasi. Pada motor DC terdapat jangkar dengan satu atau lebih kumparan terpisah. Tiap kumparan berujung pada cincin belah (komutator). Dengan adanya insulator antara komutator, cincin belah dapat berperan sebagai saklar kutub ganda (double pole, double throw switch). Motor DC bekerja berdasarkan prinsip gaya Lorentz, yang menyatakan ketika sebuah konduktor beraliran arus diletakkan dalam medan magnet, maka sebuah gaya (yang dikenal dengan gaya Lorentz) akan tercipta secara ortogonal diantara arah medan magnet dan arah aliran arus. Kecepatan putar motor DC (N) dirumuskan dengan Persamaan berikut.
Simbol motor DC di proteus:
Catu daya merupakan suatu Rangkaian yang paling penting bagi sistem elektronika. Power supply atau catu daya adalah suatu alat atau perangkat elektronik yang berfungsi untuk merubah arus AC menjadi arus DC untuk memberi daya suatu perangkat keras lainnya. Sumber AC yaitu sumber tegangan bolak-balik, sedangkan sumber tegangan DC merupakan sumber tegangan searah. Power supply/unit catu daya secara efektif harus mengisolasi rangkaian internal dari jaringan utama, dan biasanya harus dilengkapi dengan pembatas arus otomatis atau pemutus bila terjadi beban lebih atau hubung singkat. Bila pada saat terjadinya kesalahan catu daya, tegangan keluaran DC meningkat di atas suatu nilai aman maksimum untuk rangkaian internal, maka daya secara otomatis harus diputuskan.
Simbol di proteus
Grafik Respon Sensor:
10. Sound Sensor
Komponen perangkat keras penting lainnya adalah pembanding presisi tinggi LM393N. Perangkat ini wajib mendigitalkan sinyal listrik ke keluaran digital D0. Untuk menyesuaikan sensitivitas output digital D0, modul sensor suara berisi potensiometer bawaan. Sensor suara berisi mikrofon yang disebut mikrofon kondensor dengan 2 pelat bermuatan - satu adalah diafragma dan yang lainnya adalah pelat belakang. Pelat ini tampak seperti kapasitor. Jika sinyal suara (bertepuk tangan, membentak, mengetuk, alarm) atau sinyal audio bergerak melalui udara dan mengenai diafragma mikrofon, maka jarak antara 2 pelat bermuatan berubah karena getaran diafragma.
Oleh karena itu perubahan kapasitansi antara pelat ini menghasilkan sinyal listrik keluaran. Sinyal keluaran ini sebanding dengan sinyal suara masukan yang diterima mikrofon. Terakhir, sinyal keluaran diperkuat oleh amplifier dan didigitalkan untuk menentukan intensitas sinyal suara yang masuk.
Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.
Sensor Kapasitif
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.
Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.
Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.
Sensor Resistif
Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.
Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).
Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.
Grafik Touch Sensor
13. Sensor Kelembaban (HIH-5030)
14. Sensor Jarak (GP2D12)
5. Percobaan[kembali]
a) Prosedur[kembali]
- Langkah-langkah dalam membuat rangkaian ini, siapkan semua alat dan bahan serta komponen terkait dan aplikasi beserta library proteus.
- Letakkan semua alat dan bahan sesuai dengan posisi dimana alat dan bahan terletak pada aplikasi proteus .
- Tepatkan posisi letak nya dengan gambar rangkaian.
- Selanjutnya, hubungkan semua alat dan bahan menjadi suatu rangkaian yang utuh yang mana kabelnya terhubung antar alat, bahan dan komponen.
- Lalu running modelan rangkaian , jika tidak terjadi error, maka sensor akan berfungsi dan motor akan bergerak yang berarti rangkaian bekerja. Jika tidak, cek kembali kesalahan yang terjadi pada struktur rangkaian.
b) Rangkaian simulasi [kembali]
c) Video Simulasi [kembali]
1. Sensor Touch
2. Sensor PIR
3. Sensor Sound
4. Sensor MQ-2
- Sensor Jarak
- Sensor Kelembaban
6. Download File[kembali]
- Download Rangkaian klik disini
- Download File PIR Sensor Library klik disini
- Download File Sound Sensor Library klik disini
- Download File Touch Sensor Library klik disini
- Download File Gas Sensor Library klik disini
- Download Datasheet Baterai klik disini
- Download Datasheet Dioda klik disini
- Download Datasheet Relay klik disini
- Download Datasheet Lampu klik disini
- Download Datasheet Motor klik disini
- Download Datasheet Op Amp 741 klik disini
- Download Tambahan Datasheet op amp klik disini
- Download Datasheet Resistor klik disini
- Download Datasheet Transistor 2N2222 klik disini
- Download Datasheet Transistor 2N2222 (2) klik disini
- Download Datasheet Sensor PIR klik disini
- Download Datasheet Sensor Touch klik disini
- Download Datasheet Sensor Suara klik disini
- Download Datasheet Sensor Gas klik disini
- Download Datasheet Sensor Kelembaban klik disini
- Download Datasheet Sensor Jarak klik disini
- Video Rangkaian Touch Sensor klik disini
- Video Rangkaian PIR Sensor klik disini
- Video Rangkaian Sound Sensor klik disini
- Video Rangkaian Sensor MQ-2 klik disini
- Video Rangkaian Sensor jarak klik disini
- Video Rangkaian Sensor Kelembaban klik disini
- Download File HTML
Komentar
Posting Komentar